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Probability Distribution for Percolation Clusters 
Generated on a Cayley Tree at Criticality 
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We present analytical and numerical results for the probability distributions of 
the number of sites S as a function of the number of shells l for several ensem- 
bles of percolation clusters generated on a Cayley tree at criticality. We find that 
for the incipient infinite percolation cluster the probability distribution is 
P(S[ l) ~ (S/I 4) exp( - aS~F) for S >> l >> 1. 

KEY WORDS: Random walks; random media; scaling behavior. 

In recent years, there has been great interest in the concept of the fractal 
dimension of random aggregates. ~ This concept has been applied in 
various fields and its properties have been extensively studied. (1 6) The frac- 
tal dimension df of a random aggregate is defined as the exponent charac- 
terizing the relation between the average mass S of the cluster and a 
parameter L that characterizes its length 

( S )  ~ L  ds (1) 

Much effort has been devoted to the exploration of this relation for dif- 
ferent types of random aggregates. However, little is known about the 
probability distribution P(S[L) whose first moment has the scaling form 
shown in Eq. (1). 

Very recently, probability distributions for several fractal properties 
have been found to be of log-normal type, for which a hierarchy of 
exponents characterizes the moments. (7-9) A related characterizing property 
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of the fractal is the probability distribution of the mass as a function of L. 
We find normal distributions for several fractal systems generated on a 
Cayley tree with a single gap exponent for the set of moments. The study of 
the probability distribution is also important because the entropy of a 
system can be derived from it, allowing physically useful parameters to be 
calculated similar to those found for the ensemble of self-avoiding walks. (~~ 
Several authors have addressed similar problems for percolation clusters on 
the Bethe lattice. (~1 15) However, both the techniques and emphasis differ 
from those of the present work. 

In this paper, using a combination of exact and numerical methods, 
we study the probability distributions for the total mass as a function of the 
chemical distance (121 from the origin for several related percolation ensem- 
bles generated on a Cayley tree at criticality. The coordination number of 
the Cayley tree is taken equal to 3 and the critical concentration for such a 
fractal is po=0.5. The analysis to be presented assumes a percolation 
cluster grown on a Cayley tree at criticality using the Leath (16)- 
Alexandrowicz (~7) algorithm. Thus, at each node, a bond has the possibility 
of generating 0, 1, or 2 bonds in the next generation with probabilities 1/4, 
1/2, and 1/4, respectively. The number of bonds at a chemical distance l 
from the origin will be denoted by B(l) and the cumulative number of 
bonds up to and including those at distance l will be denoted by 

/ 

s(l)  = y~ ~(l ' )  (2) 
l ' = 1  

These quantities are illustrated in Fig. 1. Two distributions will be of 
interest: P(Bll), the distribution of the number of bonds at distance l, and 
P(S[ l), the corresponding distribution of S. 

Useful results can be obtained for four different models that define the 
ensembles of clusters and bonds to be counted. 

1. All generated clusters, including those that terminate, are to be 
counted. If termination occurs at l', the resulting structure having 
S' bonds, then S=S '  and B ( I ) = 0  for l>~l'. 

2. Only clusters that ultimately grow to infinity are included in the 
counts. 

3. Clusters that terminate at l' are taken into account for l<~ l', but 
not for l > l'. 

4. All clusters are forced to grow. If there is exactly one growth site 
left in the cluster, the probability that a new bond is added is 
equal to 1. 

The analytical tools used to calculate the appropriate probabilities fall into 
two classes. Moments of S and B were calculated for models 1 and 2 using 
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Number  of bonds Number  of bonds 
Shell number  l up to shell, S(l) in shell, B(I) 

l 1 1 
2 3 2 
3 5 2 
4 8 3 
5 12 4 
6 14 2 

Fig. 1. An example of a cluster with coordination number  3 generated on a Cayley tree at 
critically. 

techniques common in the theory of branching processes, I~8) and from 
these moments the probabilities (or densities in the appropriate limit) are 
found. Asymptotic results for models 3 and 4 are obtained using random 
walk techniques/~9) 

M O D E L  1 

The moments of S and B were calculated using generating function 
techniques, as is done in the theory of branching processes, (~s) some details 
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of which are given in the Appendix. Numerical values of the moments up 
to order 100 were calculated using these methods and are found to have 
the form 

n! l n i n!12n-I 
(B"(l)} - - - ,  (S"(I)} = - - ,  n = 1, 2 , .  (3) b7-1 cln--1 

for values of l~<4000 with bl = 5.0 and c 1 = 10.0. These relations are to be 
supplemented by the obvious relations (B~ = (S~ = 1. In order to 
find an expression for the probability (or probability density in the limit of 
large S and B), we evaluate the characteristic function in terms of moments 
making the assumption that Eq. (3) is valid for all n. Since B and S are 
nonnegative, the most  convenient form of the characteristic function is 

CB(z)=fo ~ p,(Bli)  e_ZBdB = ~ ( - 1 ) "  n=o n----~ (B~> z" (4) 

with a similar expression for Cs(z). On substituting the expression for 
(B"}  from Eq. (3) into this last expression and performing the summation, 
we find that 

1 
CB(z )=(1-~)  + (~)Zz  + bl/l (5) 

which is equivalent to 

P,(BI I)= ( 1 - ~ )  6(B) + (@)  2 e -b~8/~ (6) 

where the first term obviously accounts for terminated clusters. In a similar 
fashion, one finds for PI(S] l) 

c 2 Cl S'~ 
) (7) 

MODEL 2 

The same strategy, that of finding the functional form of the moments 
and summing the resulting characteristic function, was used. For this 
model we were not able to fit the moments  for all n, but rather for n > 5 we 
found 

( B  ~ } ~ 1.187n! l~/b~-I (8a) 

( S  n } ~ 0.156n! 12n/cg -1 (8b) 
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where b2= 3.653 and c2=9.375. Equation (8) for l > 4 0 0  is in agreement 
with accurately calculated values of the moments to approximately 1% or 
better for n > 5. If we substitute Eq. (8a) into Eq. (4), we find that 

Pz"+ s (AB,,F (_ l )nz , ,  
Cs~(z) = 4.337 /_, ( -  1)" - ~  nL ~ n-----i-- (9) 

n = O  = 

where (AB,,} measures the discrepancy between the numerically calculated 
value of ( B , }  and the value given in Eq. (8a). The inverse of the first line 
of Eq. (9) is 

Pz(BI l) = (15.843/l) exp(-- b2B/l) (10) 

again, in the approximation in which the lattice model can be replaced by a 
continuum description. In a similar fashion, one can show that for S one 
has 

P2(SI l) = (150.35/I 4) exp( -c2S / l  2) (11) 

It can be shown from the form of the moments in Eq. (8) that they 
uniquely determine the distribution/2~ The remaining terms must now be 
taken into account. In the continuum approximation that we have adop- 
ted, the inverse of the term ( - 1 ) n 2  is the nth derivative of a delta 
function evaluated at the origin. Hence, if one only has a finite number of 
discrepant terms, as is the case in Eq. (9), the most serious errors occur at 
the origin. In order to incorporate this observation into our approximation 
to P2(SII), let us assume that this density can be expressed as 

P2(SI I) = ( 150.35/14 ) f (S / l  2) exp( - c2 S/12 ) (12) 

where f (x )  is a smoothly varying function of x with the properties f ( 0 ) =  0, 
f (oo)  = 1. By examining exact numerical data, we found that an accurate 
form for f ( x )  is 

f ( x )  = ae -~.lx (13) 

where 2 = 0.07 and a is a constant. Thus, in this approximation the nor- 
malized form for P2(SJ l) is 

S/I 4 ( )d 2 S)  
P2(SI l) = 2()o/c2) K2(2(c2~o) ~/2) exp - - ~ - -  c2 75 (14) 

with moments 

( Sn > = 12n { 2 ~n/2 K=+n(2(c22)~/2) 

822/'.47/'i -2-12 
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Fig. 2. 
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Plot of l og (S  ~) versus n for model 2. The circles are numerical values for l =  I000 
and the line gives the theoretical values using Eq. (15). 

where Kin(x) is a modified Bessel function of the second kind of order m. 
The agreement between the moments calculated from Eq. (15) and those 
obtained numerically is illustrated in Figs. 2 and 3. 

M O D E L S  3 A N D  4 

In the first two models, no account was taken of blocked sites, i.e., 
sites from which no further branching occurred. In the present models, 

[ I I I I I 1 I I I i I I I [ I ~ I " ~  

1.35 .o 

,-4/x 
~.~ 1.3 

u 

V'~ 1.2 
V 

T 1,15 
: r  
L , q  
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Fig. 3. The ratio ( S " + 1 ) ( S " - 1 ) / ( S ' )  2 versus n plotted for model 2. This ratio is indepen- 
dent of l. The circles are the numerical values and the line the theoretical prediction using 
Eq. (15). 
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these will be included in the count, but it will be convenient in addition to 
define two new variables B'(1) and S'(1), where B'(l) is the number of 
growth sites (at distance l) that are adjacent to an occupied site, but are 
themselves neither occupied nor blocked from further growth. The variable 
S'(l) is the total number of occupied sites included in all levels less than I. 
The differences between B' and B, S', and S are illustrated in Fig. 1. When 
B and S are much greater than 1, the relationship between the primed and 
unprimed variables is approximately B ' =  2B, S'= 2S. 

As a first step, we derive an equation for B'(S'), following which the 
dependence on the distance l will be included. The two possibilities for 
changing B'(S') are 

B ' ( s '  + 1 ) = B ' ( s ' )  + 1 

B ' ( s '  + 1) = B ' ( s ' ) -  1 

if one adds an occupied site to the cluster 

if one adds a blocked site to the cluster 
(16) 

These two possibilities occur with probability 1/2, so that the process just 
mentioned constitutes an ordinary random walk in one dimension. If 
P(B'[S') denotes the conditional probability of B' given S', then in the 
continuum limit Eq. (16) is equivalent to 

6~2P 1 632p 

c~S ' - 2 c~B '2 (17) 

Model 3 requires that any cluster be destroyed when it reaches B ' = 0 ,  
which implies that Eq. (17) is to be solved subject to an absorbing boun- 
dary condition at B' = 0. Model 4 requires that at any time at which B' = 0 
is reached, the process is restarted at B ' =  1. Hence, one must solve Eq. (17) 
subject to a reflecting boundary condition. Thus, for large B' and S' we can 
assert that 

, aB' B '2"] 
P3(B'lS ) ~ e x p (  2S'] (18) 

, b P4(B'[S ) ~ e x p (  2S'J (19) 

for the resulting probability densities, where a and b are constants. Since 
model 3 involves the absorption of the random walk, it is not normalizable 
to unity, since there is a loss proportional to (S') -1/2. On the other hand, 
since there is no such loss in model 4, 

P4(B'IS') = 1 ( 2 0 )  
B 
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Equations (17) and (18) give results for P(B'tS'),  but the densities 
that are of greater interest are of the form P(B'I l) and P(S'II). We will be 
able to calculate P3(B'II) and P4(B'II) exactly, but are only able to 
calculate P 4( S' I I). 

To obtain results for P(B'[I), we first parametrize S' in terms of l. This 
is easily done by considering the following identity: 

s ' q +  l ) -  s '(l) = B'(1) (21) 

This means that in one "/-step," the walk performs B(l) ordinary steps, i.e., 
the diffusion constant is proportional to B. Hence, using the continuum 
limit, we obtain 

8P(B'II) 8 B' 8-~P(B'LI) (22) 
8l 8B' 

so that l is a time parameter. If we substitute r2/2 = B' into this equation, 
we find 

l)= ~r ~rr ~rP(rl l) (23) 

so that P(rll) is the solution to the radial equation describing two-dimen- 
sional diffusion. Hence, one finds 

P 3(r l l) = r2 e r2/t/13 

and 

or P 3 ( B ' l l )  ~- B ' e  8'/l/13 (24) 

P4(r]l) = e r2n/l or P4(B'[I) = e-B'n/l (25) 

To obtain P(S'LI) is somewhat less simple. We start from the identity 

S'(I) = ~ B'(I')= ~ r2(l ') (26) 
l'<~l l '<l  

where r(l) is the distance from the origin of the two-dimensional random 
walk describing the growth of the cluster as a function of the number of 
shells occupied. If we pass to the continuum limit, then what is required is 
clearly the distribution of the random variable 

z(t)= Ir(r>n 2 dr (27) 

In the following, we disregard the issue of absorption at the origin, i.e., we 
work entirely with Neumann boundary conditions (model4). This is 
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because otherwise the calculations are complicated. To solve this problem, 
we effectively use the Feynman-Kac formula (2~) by calculating the charac- 
teristic function 

G(q, l) = (exp[ -qI(1)] ) (28) 

where the average is taken over all two-dimensional random walks. This is 
the Laplace transform of the distribution function. If one knows G(q, l) for 
all q, then by inversion one can find the underlying density. To find this 
function, we proceed as follows. Define the conditional characteristic 
function 

G(q, II r) = f P(p, l)(exp[ -q I ( l ) ]  I t )  d2p (29) 

where ( . . . [ r )  denotes the average taken over all random walks ter- 
minating at r. We also define 

F(q; r, l )= ( e x p [ - q I ( l ) ]  I t )  e(r, l) 

= ~ exp - q  Ir(l')l 2 dl' (30) 
R W  e n d i n g  
a t  r a t  t i m e  t 

This can vary with time due either to a change in the upper limit of the 
integral when one holds the random walk fixed, or holding t fixed and con- 
sidering a different random walk. From this consideration, or by direct 
application of the Feynman-Kac formalism,(21) it follows that 

OF/c3I= - q  Irl 2 F(q; r, l) + AF (31) 

where A is the Laplacian. This equation can be solved by making the 
ansatz 

F(q; r, l) = A(1) exp[ - B(l) Irl 2] (32) 

For Eqs. (31) and (32) to be consistent, A and B must satisfy 

OA/OI = - 4 A B ,  ~B/OI = q - 4B 2 (33) 

These equations must be solved subject to the initial condition that 
F(q; r, 0) = 6(r). The solution to Eq. (32) having this property is 

A(i )=csch(2lx fq) ,  B(/) = ~  coth 2 ( / ~ )  (34) 

Thus, the probability P(S' l l )  is the inverse Laplace transform of G(q, l), 
where 

G(q, l )= j g(q; r, l) d2r = A(l) J" e - r2B(  l)  d2r 

A(l)/B(l) ~ sech(2l , ,~)  (35) 
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For the case 1 ~ ~ or, equivalently, xfq l ~ 1, 

G(q, l )=  (1 + 2q/2) -~ 

whose inverse transform is 

P4(S']I) ~ (1//2) e s/.,2 

(36) 

(37) 

In the opposite limit S~/2 ,  Eq. (35) implies that 

P4( S ' l  l) ~ ( z i g  3) e -,2/s (38) 

In Table I, we summarize the various results we obtained for the 
moments as well as our results for the asymptotic distributions. It is seen 
that by varying the models the distribution form is affected only in the 
prefactors of the exponent. The exponential forms e x p ( -  B'/l), e x p ( -  S'/12), 
and exp( -B2/S  ')  a r e  independent of the particular ensemble used. These 
results apply to percolation clusters in high dimensions (D > 6). An analog 
of this form of the distribution was suggested for P(RI N) of self-avoiding 
walks, where R is the end-to-end distance and N is the number of steps. ~m) 
It was also suggested recently ~=) for the chemical distance distribution on 
two-dimensional percolation clusters. An interesting question arises about 
the form of P(SI R) and P(SI l) for percolation clusters in low dimensions. 
The above results suggest that the general form of P(Sll)  in D dimensions 
is 

e (  s I l) ~ ( S/l~') u exp[ - ( S/I'~) ~ ] (39) 

where d =  2 and v = 1 for d >  6. As far as the moments are concerned, we 
see that a single gap exponent characterizes the set of moments, a result 
that follows immediately from the scaling law obeyed by these dis- 
tributions. 

Table I. M o m e n t s  and Asymp to t i c  Forms for the Dis t r ibu t ions  
Derived for Models 1-4 

Model 
number (B'~)i ( S " ) i  Pi(Bll)  P~(Sll) P~(SIB) 

l l" 1 12,,-I l - 2 e x p ( _ B / l )  l -3exp(_S/12)  
2 in 12n 1-1 exp(--B/l)  S1-4 e x p ( - S / l  2) - -  
3 l"- 1 12n- I B1-3 exp(--B/l)  - -  BS -3/2 exp( -B2 /S)  
4 l n 12n /--1 exp(--B/l)  1-2 exp(--S/ l  2) S 1/2 exp(_B2/S)  
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A P P E N D I X .  M E T H O D S  FOR C A L C U L A T I N G  ( B " ( I ) )  A N D  
(S"(I)) FOR M O D E L S  1 A N D  2 

The Cayley tree of this paper is an example of a branching process in 
which a node in a given generation becomes 0, 1, or 2 nodes in the next 
generation with respective probabilities 1/4, 1/2, 1/4. Hence, the 
corresponding probability generating function is 

f i x )  = 1 + �89 + �88 2 = �88 + x) 2 (A1) 

If U,(x) is the generating function for the number of nodes at distance l 
from the vertex of the tree, then this quantity can be obtained from the 
recursion 

U l ( x ) = f ( x ) ;  U,+ l(x) = ~-[1 + Ut(x)] 2 (A2) 

Since U j x )  can be used to generate moments by differentiation, the recur- 
sion of Eq. (A2) allows us to calculate moments recursively for the suc- 
cessive generations. 

To find corresponding moments of clusters that grow to infinity, we 
notice that the probability that there are no live nodes at distance l is 

dr = G(0) (A3) 

As l ~  0% a well-known result in the theory of branching processes (18) suf- 
fices to show that d~--*d, where d is the smallest root o f f ( d ) = d .  In the 
present case, it is easy to show that d =  1 because of the assumption of 
criticality. If one is above criticality so that d <  1, it follows that the 
generating function conditional on survival is 

G(x) -  Ut(dx) 
V~(x) - (A4) 

1 - U ~ ( d )  

In the limit d =  1, this goes over into 

G(x) --, -~ Ut(dx) ~= (AS) 

This is not normalized, but it is easy to convert to normalized form. When 
the mean number of bonds generated at a live node is ( b ) ,  then since 
every node generates an average of ( b )  bonds, it follows that the average 
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number of bonds at I is ( b )  t. It therefore follows that the normalized 
function corresponding to Eq. (A5) is 

1 d x= Vt(x) = - ~ l  x ~ Ut(x) ((A6) 
1 

This relation, together with the recursion step in Eq. (A2), was used to 
generate moments for model 2. 
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